Android的线程和线程池

线程在Android中是一个很重要的概念,从用途上来说,线程分为主线程和子线程,主线程主要处理和界面相关的事情,而子线程则往往用于执行耗时操作。在Android中扮演线程角色的还有很多,比如AsyncTask和IntentService,同时HandlerThread也是一种特殊的线程,但他们本质都是传统的线程。AsyncTask底层用到了线程池,对于IntentService和HandlerThread来说,它们的底层则直接使用了线程。

不同形式的线程虽然都是线程,但是它们具有不同的特性和使用场景。AsyncTask封装了线程池和Handler,它主要是为了方便开发者在子线程中更新UI,HandlerThread是一中消息循环的线程,在它的内部可以使用Handler。IntentService是一个服务,系统对其进行了封装使其可以更方便地执行后台任务,IntentService内部采用HandlerThread来执行任务,当任务执行完毕后IntentService会自动退出。

在操作系统中,线程是操作系统的调度的最小单元,同时线程又是一种受限的系统资源,即线程不可能无限制地产生,并且线程的创建和销毁都会相应的开销。如果一个进程中频繁地创建和销毁线程,这显然不是高效的做法,正确的做法是采用线程池,在这个线程池中会缓存一定数量的线程,通过线程池就可以避免因为频繁创建和销毁线程所带来的系统开销。

Android中的线程形态

AsyncTask

AsyncTask是一种轻量级的异步任务类,它可以在线程池中执行后台任务,然后把执行的进度和最终结果传递给主线程并在主线程中更新UI。从实现上来说,AsyncTask封装了Thread和Handler,通过AsyncTask可以更加方便地执行后台任务以及在主线程中访问UI,但是AsyncTask并不适合进行特别耗时的后台任务,对于特别耗时的任务来说,用线程池比较好点。

AsyncTask提供了4个核心方法:

  • onPreExecute(),在主线程中执行,在异步任务执行之前,次方法会被调用,做一些准备工作。
  • doInBackground(Params…params),在线程池中执行,次方法用于执行异步任务,params参数表示异步任务的输入参数。
  • onProgressUpdate(Progress…values),在主线程中执行,当后台任务的执行进度发生改变时此方法会被调用。
  • onPostExecute(Result result),在主线程中执行,在异步任务执行之后,此方法会被调用。

看下源码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
public abstract class AsyncTask<Params, Progress, Result> {
private static final String LOG_TAG = "AsyncTask";

private static final int CPU_COUNT = Runtime.getRuntime().availableProcessors();
// We want at least 2 threads and at most 4 threads in the core pool,
// preferring to have 1 less than the CPU count to avoid saturating
// the CPU with background work
private static final int CORE_POOL_SIZE = Math.max(2, Math.min(CPU_COUNT - 1, 4));
private static final int MAXIMUM_POOL_SIZE = CPU_COUNT * 2 + 1;
private static final int KEEP_ALIVE_SECONDS = 30;

private static final ThreadFactory sThreadFactory = new ThreadFactory() {
private final AtomicInteger mCount = new AtomicInteger(1);

public Thread newThread(Runnable r) {
return new Thread(r, "AsyncTask #" + mCount.getAndIncrement());
}
};

private static final BlockingQueue<Runnable> sPoolWorkQueue =
new LinkedBlockingQueue<Runnable>(128);

/**
* An {@link Executor} that can be used to execute tasks in parallel.
*/
public static final Executor THREAD_POOL_EXECUTOR;

static {
ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(
CORE_POOL_SIZE, MAXIMUM_POOL_SIZE, KEEP_ALIVE_SECONDS, TimeUnit.SECONDS,
sPoolWorkQueue, sThreadFactory);
threadPoolExecutor.allowCoreThreadTimeOut(true);
THREAD_POOL_EXECUTOR = threadPoolExecutor;
}

/**
* An {@link Executor} that executes tasks one at a time in serial
* order. This serialization is global to a particular process.
*/
public static final Executor SERIAL_EXECUTOR = new SerialExecutor();

private static final int MESSAGE_POST_RESULT = 0x1;
private static final int MESSAGE_POST_PROGRESS = 0x2;

private static volatile Executor sDefaultExecutor = SERIAL_EXECUTOR;
private static InternalHandler sHandler;

private final WorkerRunnable<Params, Result> mWorker;
private final FutureTask<Result> mFuture;

private volatile Status mStatus = Status.PENDING;

private final AtomicBoolean mCancelled = new AtomicBoolean();
private final AtomicBoolean mTaskInvoked = new AtomicBoolean();

private static class SerialExecutor implements Executor {
final ArrayDeque<Runnable> mTasks = new ArrayDeque<Runnable>();
Runnable mActive;

public synchronized void execute(final Runnable r) {
mTasks.offer(new Runnable() {
public void run() {
try {
r.run();
} finally {
scheduleNext();
}
}
});
if (mActive == null) {
scheduleNext();
}
}

protected synchronized void scheduleNext() {
if ((mActive = mTasks.poll()) != null) {
THREAD_POOL_EXECUTOR.execute(mActive);
}
}
}

/**
* Indicates the current status of the task. Each status will be set only once
* during the lifetime of a task.
*/
public enum Status {
/**
* Indicates that the task has not been executed yet.
*/
PENDING,
/**
* Indicates that the task is running.
*/
RUNNING,
/**
* Indicates that {@link AsyncTask#onPostExecute} has finished.
*/
FINISHED,
}

private static Handler getHandler() {
synchronized (AsyncTask.class) {
if (sHandler == null) {
sHandler = new InternalHandler();
}
return sHandler;
}
}

/** @hide */
public static void setDefaultExecutor(Executor exec) {
sDefaultExecutor = exec;
}

/**
* Creates a new asynchronous task. This constructor must be invoked on the UI thread.
*/
public AsyncTask() {
mWorker = new WorkerRunnable<Params, Result>() {
public Result call() throws Exception {
mTaskInvoked.set(true);
Result result = null;
try {
Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
//noinspection unchecked
result = doInBackground(mParams);
Binder.flushPendingCommands();
} catch (Throwable tr) {
mCancelled.set(true);
throw tr;
} finally {
postResult(result);
}
return result;
}
};

mFuture = new FutureTask<Result>(mWorker) {
@Override
protected void done() {
try {
postResultIfNotInvoked(get());
} catch (InterruptedException e) {
android.util.Log.w(LOG_TAG, e);
} catch (ExecutionException e) {
throw new RuntimeException("An error occurred while executing doInBackground()",
e.getCause());
} catch (CancellationException e) {
postResultIfNotInvoked(null);
}
}
};
}

private void postResultIfNotInvoked(Result result) {
final boolean wasTaskInvoked = mTaskInvoked.get();
if (!wasTaskInvoked) {
postResult(result);
}
}

private Result postResult(Result result) {
@SuppressWarnings("unchecked")
Message message = getHandler().obtainMessage(MESSAGE_POST_RESULT,
new AsyncTaskResult<Result>(this, result));
message.sendToTarget();
return result;
}

/**
* Returns the current status of this task.
*
* @return The current status.
*/
public final Status getStatus() {
return mStatus;
}

/**
* Override this method to perform a computation on a background thread. The
* specified parameters are the parameters passed to {@link #execute}
* by the caller of this task.
*
* This method can call {@link #publishProgress} to publish updates
* on the UI thread.
*
* @param params The parameters of the task.
*
* @return A result, defined by the subclass of this task.
*
* @see #onPreExecute()
* @see #onPostExecute
* @see #publishProgress
*/
@WorkerThread
protected abstract Result doInBackground(Params... params);

/**
* Runs on the UI thread before {@link #doInBackground}.
*
* @see #onPostExecute
* @see #doInBackground
*/
@MainThread
protected void onPreExecute() {
}

/**
* <p>Runs on the UI thread after {@link #doInBackground}. The
* specified result is the value returned by {@link #doInBackground}.</p>
*
* <p>This method won't be invoked if the task was cancelled.</p>
*
* @param result The result of the operation computed by {@link #doInBackground}.
*
* @see #onPreExecute
* @see #doInBackground
* @see #onCancelled(Object)
*/
@SuppressWarnings({"UnusedDeclaration"})
@MainThread
protected void onPostExecute(Result result) {
}

/**
* Runs on the UI thread after {@link #publishProgress} is invoked.
* The specified values are the values passed to {@link #publishProgress}.
*
* @param values The values indicating progress.
*
* @see #publishProgress
* @see #doInBackground
*/
@SuppressWarnings({"UnusedDeclaration"})
@MainThread
protected void onProgressUpdate(Progress... values) {
}

/**
* <p>Runs on the UI thread after {@link #cancel(boolean)} is invoked and
* {@link #doInBackground(Object[])} has finished.</p>
*
* <p>The default implementation simply invokes {@link #onCancelled()} and
* ignores the result. If you write your own implementation, do not call
* <code>super.onCancelled(result)</code>.</p>
*
* @param result The result, if any, computed in
* {@link #doInBackground(Object[])}, can be null
*
* @see #cancel(boolean)
* @see #isCancelled()
*/
@SuppressWarnings({"UnusedParameters"})
@MainThread
protected void onCancelled(Result result) {
onCancelled();
}

/**
* <p>Applications should preferably override {@link #onCancelled(Object)}.
* This method is invoked by the default implementation of
* {@link #onCancelled(Object)}.</p>
*
* <p>Runs on the UI thread after {@link #cancel(boolean)} is invoked and
* {@link #doInBackground(Object[])} has finished.</p>
*
* @see #onCancelled(Object)
* @see #cancel(boolean)
* @see #isCancelled()
*/
@MainThread
protected void onCancelled() {
}

/**
* Returns <tt>true</tt> if this task was cancelled before it completed
* normally. If you are calling {@link #cancel(boolean)} on the task,
* the value returned by this method should be checked periodically from
* {@link #doInBackground(Object[])} to end the task as soon as possible.
*
* @return <tt>true</tt> if task was cancelled before it completed
*
* @see #cancel(boolean)
*/
public final boolean isCancelled() {
return mCancelled.get();
}

/**
* <p>Attempts to cancel execution of this task. This attempt will
* fail if the task has already completed, already been cancelled,
* or could not be cancelled for some other reason. If successful,
* and this task has not started when <tt>cancel</tt> is called,
* this task should never run. If the task has already started,
* then the <tt>mayInterruptIfRunning</tt> parameter determines
* whether the thread executing this task should be interrupted in
* an attempt to stop the task.</p>
*
* <p>Calling this method will result in {@link #onCancelled(Object)} being
* invoked on the UI thread after {@link #doInBackground(Object[])}
* returns. Calling this method guarantees that {@link #onPostExecute(Object)}
* is never invoked. After invoking this method, you should check the
* value returned by {@link #isCancelled()} periodically from
* {@link #doInBackground(Object[])} to finish the task as early as
* possible.</p>
*
* @param mayInterruptIfRunning <tt>true</tt> if the thread executing this
* task should be interrupted; otherwise, in-progress tasks are allowed
* to complete.
*
* @return <tt>false</tt> if the task could not be cancelled,
* typically because it has already completed normally;
* <tt>true</tt> otherwise
*
* @see #isCancelled()
* @see #onCancelled(Object)
*/
public final boolean cancel(boolean mayInterruptIfRunning) {
mCancelled.set(true);
return mFuture.cancel(mayInterruptIfRunning);
}

/**
* Waits if necessary for the computation to complete, and then
* retrieves its result.
*
* @return The computed result.
*
* @throws CancellationException If the computation was cancelled.
* @throws ExecutionException If the computation threw an exception.
* @throws InterruptedException If the current thread was interrupted
* while waiting.
*/
public final Result get() throws InterruptedException, ExecutionException {
return mFuture.get();
}

/**
* Waits if necessary for at most the given time for the computation
* to complete, and then retrieves its result.
*
* @param timeout Time to wait before cancelling the operation.
* @param unit The time unit for the timeout.
*
* @return The computed result.
*
* @throws CancellationException If the computation was cancelled.
* @throws ExecutionException If the computation threw an exception.
* @throws InterruptedException If the current thread was interrupted
* while waiting.
* @throws TimeoutException If the wait timed out.
*/
public final Result get(long timeout, TimeUnit unit) throws InterruptedException,
ExecutionException, TimeoutException {
return mFuture.get(timeout, unit);
}

/**
* Executes the task with the specified parameters. The task returns
* itself (this) so that the caller can keep a reference to it.
*
* <p>Note: this function schedules the task on a queue for a single background
* thread or pool of threads depending on the platform version. When first
* introduced, AsyncTasks were executed serially on a single background thread.
* Starting with {@link android.os.Build.VERSION_CODES#DONUT}, this was changed
* to a pool of threads allowing multiple tasks to operate in parallel. Starting
* {@link android.os.Build.VERSION_CODES#HONEYCOMB}, tasks are back to being
* executed on a single thread to avoid common application errors caused
* by parallel execution. If you truly want parallel execution, you can use
* the {@link #executeOnExecutor} version of this method
* with {@link #THREAD_POOL_EXECUTOR}; however, see commentary there for warnings
* on its use.
*
* <p>This method must be invoked on the UI thread.
*
* @param params The parameters of the task.
*
* @return This instance of AsyncTask.
*
* @throws IllegalStateException If {@link #getStatus()} returns either
* {@link AsyncTask.Status#RUNNING} or {@link AsyncTask.Status#FINISHED}.
*
* @see #executeOnExecutor(java.util.concurrent.Executor, Object[])
* @see #execute(Runnable)
*/
@MainThread
public final AsyncTask<Params, Progress, Result> execute(Params... params) {
return executeOnExecutor(sDefaultExecutor, params);
}

/**
* Executes the task with the specified parameters. The task returns
* itself (this) so that the caller can keep a reference to it.
*
* <p>This method is typically used with {@link #THREAD_POOL_EXECUTOR} to
* allow multiple tasks to run in parallel on a pool of threads managed by
* AsyncTask, however you can also use your own {@link Executor} for custom
* behavior.
*
* <p><em>Warning:</em> Allowing multiple tasks to run in parallel from
* a thread pool is generally <em>not</em> what one wants, because the order
* of their operation is not defined. For example, if these tasks are used
* to modify any state in common (such as writing a file due to a button click),
* there are no guarantees on the order of the modifications.
* Without careful work it is possible in rare cases for the newer version
* of the data to be over-written by an older one, leading to obscure data
* loss and stability issues. Such changes are best
* executed in serial; to guarantee such work is serialized regardless of
* platform version you can use this function with {@link #SERIAL_EXECUTOR}.
*
* <p>This method must be invoked on the UI thread.
*
* @param exec The executor to use. {@link #THREAD_POOL_EXECUTOR} is available as a
* convenient process-wide thread pool for tasks that are loosely coupled.
* @param params The parameters of the task.
*
* @return This instance of AsyncTask.
*
* @throws IllegalStateException If {@link #getStatus()} returns either
* {@link AsyncTask.Status#RUNNING} or {@link AsyncTask.Status#FINISHED}.
*
* @see #execute(Object[])
*/
@MainThread
public final AsyncTask<Params, Progress, Result> executeOnExecutor(Executor exec,
Params... params) {
if (mStatus != Status.PENDING) {
switch (mStatus) {
case RUNNING:
throw new IllegalStateException("Cannot execute task:"
+ " the task is already running.");
case FINISHED:
throw new IllegalStateException("Cannot execute task:"
+ " the task has already been executed "
+ "(a task can be executed only once)");
}
}

mStatus = Status.RUNNING;

onPreExecute();

mWorker.mParams = params;
exec.execute(mFuture);

return this;
}

/**
* Convenience version of {@link #execute(Object...)} for use with
* a simple Runnable object. See {@link #execute(Object[])} for more
* information on the order of execution.
*
* @see #execute(Object[])
* @see #executeOnExecutor(java.util.concurrent.Executor, Object[])
*/
@MainThread
public static void execute(Runnable runnable) {
sDefaultExecutor.execute(runnable);
}

/**
* This method can be invoked from {@link #doInBackground} to
* publish updates on the UI thread while the background computation is
* still running. Each call to this method will trigger the execution of
* {@link #onProgressUpdate} on the UI thread.
*
* {@link #onProgressUpdate} will not be called if the task has been
* canceled.
*
* @param values The progress values to update the UI with.
*
* @see #onProgressUpdate
* @see #doInBackground
*/
@WorkerThread
protected final void publishProgress(Progress... values) {
if (!isCancelled()) {
getHandler().obtainMessage(MESSAGE_POST_PROGRESS,
new AsyncTaskResult<Progress>(this, values)).sendToTarget();
}
}

private void finish(Result result) {
if (isCancelled()) {
onCancelled(result);
} else {
onPostExecute(result);
}
mStatus = Status.FINISHED;
}

private static class InternalHandler extends Handler {
public InternalHandler() {
super(Looper.getMainLooper());
}

@SuppressWarnings({"unchecked", "RawUseOfParameterizedType"})
@Override
public void handleMessage(Message msg) {
AsyncTaskResult<?> result = (AsyncTaskResult<?>) msg.obj;
switch (msg.what) {
case MESSAGE_POST_RESULT:
// There is only one result
result.mTask.finish(result.mData[0]);
break;
case MESSAGE_POST_PROGRESS:
result.mTask.onProgressUpdate(result.mData);
break;
}
}
}

private static abstract class WorkerRunnable<Params, Result> implements Callable<Result> {
Params[] mParams;
}

@SuppressWarnings({"RawUseOfParameterizedType"})
private static class AsyncTaskResult<Data> {
final AsyncTask mTask;
final Data[] mData;

AsyncTaskResult(AsyncTask task, Data... data) {
mTask = task;
mData = data;
}
}
}

从中我们知道了,线程池中线程的数量跟CPU内核多少有关,在一个处理队列中最多只有128个,这个并发数超过就会报异常,同时源码里也看到,是通过sHandler发送一个MESSAGE_POST_RESULT的消息进行最终处理的。

sHandler是一个静态的Handler对象,为了能够将执行环境切换到主线程,这就要求sHandler这个对象必须在主线程中创建。由于静态成员会在加载类的时候进行初始化,因此这就变相要求AsyncTask的类必须在主线程中加载,否则同一个进程中的AsyncTask都无法正常工作。

还有一点要注意下,从Android 3.0开始,默认情况下AsyncTask是串行执行的。但在Android 3.0之前是并行执行的。

HandlerThread

HandlerThread继承了Thread,它是一种可以使用Handler的Thread,它的实现很简单,就在run方法中通过Looper.prepare()来创建消息队列,并通过Looper.loop()来开启消息循环,这样在实际的使用中就允许在HandlerThread中创建Handler。看下源代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
public class HandlerThread extends Thread {
int mPriority;
int mTid = -1;
Looper mLooper;

public HandlerThread(String name) {
super(name);
mPriority = Process.THREAD_PRIORITY_DEFAULT;
}

/**
* Constructs a HandlerThread.
* @param name
* @param priority The priority to run the thread at. The value supplied must be from
* {@link android.os.Process} and not from java.lang.Thread.
*/
public HandlerThread(String name, int priority) {
super(name);
mPriority = priority;
}

/**
* Call back method that can be explicitly overridden if needed to execute some
* setup before Looper loops.
*/
protected void onLooperPrepared() {
}

@Override
public void run() {
mTid = Process.myTid();
Looper.prepare();
synchronized (this) {
mLooper = Looper.myLooper();
notifyAll();
}
Process.setThreadPriority(mPriority);
onLooperPrepared();
Looper.loop();
mTid = -1;
}

/**
* This method returns the Looper associated with this thread. If this thread not been started
* or for any reason is isAlive() returns false, this method will return null. If this thread
* has been started, this method will block until the looper has been initialized.
* @return The looper.
*/
public Looper getLooper() {
if (!isAlive()) {
return null;
}

// If the thread has been started, wait until the looper has been created.
synchronized (this) {
while (isAlive() && mLooper == null) {
try {
wait();
} catch (InterruptedException e) {
}
}
}
return mLooper;
}

/**
* Quits the handler thread's looper.
* <p>
* Causes the handler thread's looper to terminate without processing any
* more messages in the message queue.
* </p><p>
* Any attempt to post messages to the queue after the looper is asked to quit will fail.
* For example, the {@link Handler#sendMessage(Message)} method will return false.
* </p><p class="note">
* Using this method may be unsafe because some messages may not be delivered
* before the looper terminates. Consider using {@link #quitSafely} instead to ensure
* that all pending work is completed in an orderly manner.
* </p>
*
* @return True if the looper looper has been asked to quit or false if the
* thread had not yet started running.
*
* @see #quitSafely
*/
public boolean quit() {
Looper looper = getLooper();
if (looper != null) {
looper.quit();
return true;
}
return false;
}

/**
* Quits the handler thread's looper safely.
* <p>
* Causes the handler thread's looper to terminate as soon as all remaining messages
* in the message queue that are already due to be delivered have been handled.
* Pending delayed messages with due times in the future will not be delivered.
* </p><p>
* Any attempt to post messages to the queue after the looper is asked to quit will fail.
* For example, the {@link Handler#sendMessage(Message)} method will return false.
* </p><p>
* If the thread has not been started or has finished (that is if
* {@link #getLooper} returns null), then false is returned.
* Otherwise the looper is asked to quit and true is returned.
* </p>
*
* @return True if the looper looper has been asked to quit or false if the
* thread had not yet started running.
*/
public boolean quitSafely() {
Looper looper = getLooper();
if (looper != null) {
looper.quitSafely();
return true;
}
return false;
}

/**
* Returns the identifier of this thread. See Process.myTid().
*/
public int getThreadId() {
return mTid;
}
}

IntentService

IntentService是一种特殊的Service,它继承了Service并且它是一种抽象类,因此必须创建它的子类才能使用IntentService。IntentService可用于执行后台耗时的任务,当任务执行后它会自动停止,同时由于IntentService是服务的原因,这导致他的优先级比单纯的线程要高很多,所以IntentService比较适合执行一些高优先级的后台任务,因为它的优先级高不容易被系统杀死。看下源码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
public abstract class IntentService extends Service {
private volatile Looper mServiceLooper;
private volatile ServiceHandler mServiceHandler;
private String mName;
private boolean mRedelivery;

private final class ServiceHandler extends Handler {
public ServiceHandler(Looper looper) {
super(looper);
}

@Override
public void handleMessage(Message msg) {
onHandleIntent((Intent)msg.obj);
stopSelf(msg.arg1);
}
}

/**
* Creates an IntentService. Invoked by your subclass's constructor.
*
* @param name Used to name the worker thread, important only for debugging.
*/
public IntentService(String name) {
super();
mName = name;
}

/**
* Sets intent redelivery preferences. Usually called from the constructor
* with your preferred semantics.
*
* <p>If enabled is true,
* {@link #onStartCommand(Intent, int, int)} will return
* {@link Service#START_REDELIVER_INTENT}, so if this process dies before
* {@link #onHandleIntent(Intent)} returns, the process will be restarted
* and the intent redelivered. If multiple Intents have been sent, only
* the most recent one is guaranteed to be redelivered.
*
* <p>If enabled is false (the default),
* {@link #onStartCommand(Intent, int, int)} will return
* {@link Service#START_NOT_STICKY}, and if the process dies, the Intent
* dies along with it.
*/
public void setIntentRedelivery(boolean enabled) {
mRedelivery = enabled;
}

@Override
public void onCreate() {
// TODO: It would be nice to have an option to hold a partial wakelock
// during processing, and to have a static startService(Context, Intent)
// method that would launch the service & hand off a wakelock.

super.onCreate();
HandlerThread thread = new HandlerThread("IntentService[" + mName + "]");
thread.start();

mServiceLooper = thread.getLooper();
mServiceHandler = new ServiceHandler(mServiceLooper);
}

@Override
public void onStart(@Nullable Intent intent, int startId) {
Message msg = mServiceHandler.obtainMessage();
msg.arg1 = startId;
msg.obj = intent;
mServiceHandler.sendMessage(msg);
}

/**
* You should not override this method for your IntentService. Instead,
* override {@link #onHandleIntent}, which the system calls when the IntentService
* receives a start request.
* @see android.app.Service#onStartCommand
*/
@Override
public int onStartCommand(@Nullable Intent intent, int flags, int startId) {
onStart(intent, startId);
return mRedelivery ? START_REDELIVER_INTENT : START_NOT_STICKY;
}

@Override
public void onDestroy() {
mServiceLooper.quit();
}

/**
* Unless you provide binding for your service, you don't need to implement this
* method, because the default implementation returns null.
* @see android.app.Service#onBind
*/
@Override
@Nullable
public IBinder onBind(Intent intent) {
return null;
}

/**
* This method is invoked on the worker thread with a request to process.
* Only one Intent is processed at a time, but the processing happens on a
* worker thread that runs independently from other application logic.
* So, if this code takes a long time, it will hold up other requests to
* the same IntentService, but it will not hold up anything else.
* When all requests have been handled, the IntentService stops itself,
* so you should not call {@link #stopSelf}.
*
* @param intent The value passed to {@link
* android.content.Context#startService(Intent)}.
* This may be null if the service is being restarted after
* its process has gone away; see
* {@link android.app.Service#onStartCommand}
* for details.
*/
@WorkerThread
protected abstract void onHandleIntent(@Nullable Intent intent);
}

Android中的线程池

线程池的优点:

  • 重用线程池中的线程,避免因为线程的创建和销毁所带来的性能开销。
  • 能有效控制线程池中的最大并发数,避免大量的线程之间因为互相抢占系统资源而导致的阻塞现象。
  • 能够对线程进行简单的管理,并提供定时执行以及指定间隔循环执行等功能。

Android中的线程池的概念来源于Java中的Executor,Executor是一个接口,真正的线程池的实现为ThreadPoolExecutor。ThreadPoolExecutor提供一系列参数来配置线程池,通过不同的参数可以创建不同的线程池,从线程池的功能特性来说,线程池主要分为4类。

ThreadPoolExecutor执行任务时大致遵循以下规则:

  1. 如果线程池中的线程数量未达到核心线程的数量,那么会直接启动一个核心线程来执行任务。
  2. 如果线程中的线程数量已经达到或者超过核心线程的数量,那么任务会被插入到任务队列中排队等待执行。
  3. 如果在步骤2中无法将任务插入到任务队列中,这往往是由于任务队列已经满了, 这个时候如果线程数量未达到线程池规定的最大值,那么会立刻启动一个非核心线程来执行任务。
  4. 如果步骤3的中线程数量已经达到线程池规定的最大值,那么就拒绝执行此任务,ThreadPoolExecutor会调用RejectedExecutionHandler的rejectedExecution方法来通知调用者。

线程池主要有4类:

  • FixThreadPool:这是一种线程数量固定的线程池,当线程处于空闲的时候,并不会被回收,除非线程池被关闭了。
  • CachedThreadPool:这是一种线程数量不定的线程池,它只有非核心线程,并且最大线程数为Integer.MAX_VALUE。
  • ScheduledThreadPool:它的核心线程数量是固定的,而非核心线程数是没有限制的,并且当非核心线程闲置时会被立即回收。
  • SingleThreadExecutor:这类线程池内部只有一个核心线程,它确保所有的任务都在同一个线程中按顺序执行。
,